

Chang Geun Lee, Jung Hyun Lee, Aaron Specht, Sa Liu, Ulrike Dydak, Jae Hong Park* PURDUE **UNIVERSITY**_α School of Health Sciences, Purdue University, West Lafayette, IN, USA

Background

> Welding fumes

- 574,000 employees in welding, soldering, and brazing occupations in US
- The majority are welders who are exposed to welding fumes.
- Hazardous metals in welding fumes^[1]
- Manganese (Mn): Parkinson's-like disorder
- Iron (Fe): pneumoconiosis
- Zinc (Zn): metal fume fever
- Chromium (Cr): lung cancer (Cr-VI)
- > Metals in toenail as biomarkers
- Inhaled metals deposit in toenails and other body parts.^[2]
- Mn concentration in toenails was proposed as a biomarker of chronic exposure to welding fumes.^[3]

Toenail metal analysis

- No standard methods
- Inductively coupled plasma (ICP)-mass spectrometry (-MS) is widely used.
- ICP-optical emission spectrometry (-OES) or X-ray fluorescence (XRF) can be more appropriate for toenail metal analysis.

Methods	Limit of detection	Cost, time, & labor effectiveness	d
ICP-MS	+++	+	
ICP-OES	++	++	
XRF	+	+++	N

Relevance to National Occupational Research Agenda (NORA)

- Sector programs of "Manufacturing" and "Construction"
- Core and Specialty Program of "Exposure Assessment"
- Cross-sector program of "Cancer, Reproductive, Cardiovascular and Other Chronic Disease Prevention"

Objectives

- > Explore the applicability of ICP-OES and XRF for analyzing metals in toenails in comparison with ICP-MS.
- Hypothesis: ICP-OES and XRF can measure toenail metal concentrations as accurately as ICP-MS.
- Specific Aim 1: Measure metal concentrations in toenails using ICP-OES and compare the results to ICP-MS measurements
- Specific Aim 2: Measure metal concentrations in toenails using XRF and compare the results to ICP-MS measurements

Experimental design

Step 1: Sample collection

- Clip toenails of subjects
- 20 welders and 20 non-welders
- Step 2: Sample cleaning and weighing
- \circ Wash toenails in Triton X–100 (non-ionic surfactant, 1% in deionized water) using ultra-sonication for 1 hour
- Rinse with deionized water (ASTM II) 3 times
- \circ Dry in an oven for > 24 hours and weigh using a microscale

Assessing the Applicability of Methods to Analyze Metals in Toenails

- known concentrations of metals
- Panalytical)

- measurements

- using XRFs and ICPs by toenail mass
- b-XRF against ICP-MS

> Impact of results

- Guideline to select an appropriate method to analyze toenail metals

Ρ	relin	ninary	data								
Comparison of ICP-OES, b-XRF, and p-XRF against ICP-MS											
(welders: n = 6, non-welders: n = 4) Metal concentration in toenails, ug/g											
Method		Mn	Fe	Zn	AI	Cr	Cu	Ni			
ICP-MS		2.6±1.7	36.5±28.0	94.7±27.9	28.2±37.6	1.0±2.6	5.4±1.8	0.1±0.3			
ICP-OES		2.8±2.1	35.3±30.6	81.0±29.3	16.0±32.0	2.2±1.9	6.3±3.0	0.2 ± 0.6			
Pearson's r		1.00	0.96	0.79	0.99	0.22	-0.15	0.19			
b-XRF		2.6±1.4	25.4±6.6	113.2±14.3	0.4±1.9	1.4±0.6	25.8±9.5	0.5 ± 0.5			
Pearson's r		1.00	0.68	0.18	0.3	-0.09	-0.24	-0.10			
р-	XRF	6.6±2.7	32.6±15.8	72.2±35.5	N/A	1.4±0.5	4.9±1.8	0.1 ± 0.0			
Pear	rson's r	0.83	0.93	0.72	N/A	0.51	0.15	0.52			
10 -	Mn •	ICP-OES b-XRF p-XRF	y = 1.13x R ² = 0	+ 3.72 10 .47		-OES RF RF	y = 1.05x - 3 R² = 0.92	.17			
ail, µg	-						ý	= 0.52x + 13.49 R ² = 0.87			
n toen 9	-		y = ' F	1.16x - 0.12 R ² = 0.84	0 +		·····	0.16× 10.46			
ation i			• • • • • • • • • • • • • • • • • • •		0 +	• • • • • • • • • • • • • • • • • • •	y	$R^2 = 0.47$			
centra			y =	$\begin{array}{c} & & \\ 0.75x + 0.63 \\ R^2 = 0.80 \end{array}$	0						
Con	•••••	·····	•	,	••••••	•					
Ŭ	0	1 2	3	4 5		50)	100			
		OES sho	wed strong	correlation v	with ICP-MS	on in toenali m	leasured by ICP	· ⋈ S, µg/g			
	Mn,	Fe, Zn, a	nd Al (r = 1	.00, 0.96, 0.	79, and 0.9	9, respec	ctively).				
(b-XRF showed strong correlation with ICP-MS in 										
	Mn, and Fe (r = 1.00, and 0.68).										
(o p-⊼R Mn,∣	Fe, and Z	Zn (r = 0.83	, 0.93 , and ().72, respec	tively).					
F	uture	e func	ding pla	an							
		fundin									
		e Tunain stigation	g pian of the relativ	onshin hatw	oon toonail	metal con	acontration	ne and			
C	healt	h outcom	nes (target:	National Ins	titute for Oc	cupation	al Safety a	and			
 Health (NIOSH) R21 or R01 grant) Development of evidence-based policies and regulations for protecting 											
								ing a tool for			
	expo	sure mor	nitoring (tar	get: grant fro	om National	Institutes	s of Health	(NIH),			
	NIH	Health So	ciences (NII	EHS), or Env	vironmental	Protectio	on Agency	(EPA)			
R	efere	ences									
[1] Antonini et al. 2003. Critical Reviews in Toxicology 33 (1): 61-103											
[2] Hopps et al. 1977. Science of the Total Environment 7 (1): 71-89											
[3] \	Nard et	t al. 2018	. Annals of	Work Expos	sures and H	<i>lealth</i> 62	(1): 101–1	1			
	Ackr	nowle	dgeme	nts							
This study is supported by the National Institute for Occupational Safety and Health through the Pilot Research Project Training Program of the University of Cincinneti											
Education and Research Center Grant #T42OH008432, the National Institutes of Health (NIH R01 ES032478), and the International Manganese Institute research grant.											