

Cool Coat: An Advanced Wearable Thermal Management Solution for Harsh Environment

Qichen Fang¹, Vesselin Shanov^{1,2}

- 1. Department of Chemical and Environmental Engineering, CEAS, University of Cincinnati, Ohio
- 2. Department of Mechanical and Materials Engineering, CEAS, University of Cincinnati, Ohio

Background

- Workers are often exposed to harsh environments with extreme temperatures, posing serious risks to their health and safety¹.
- > The Cool Coat project utilizes carbon veil fabric, known for its high thermal conductivity, combined with thermoelectric cooling sources and fans to create wearable garments for efficient thermal management.
- > This innovation aims to enhance comfort and productivity for workers in harsh environments, potentially benefiting first responders and military personnel in hot conditions.

Objectives

- > Demonstrate the Cool Coat concept integrating carbon veil fabric, fans, and thermoelectric coolers with a comfort and tocus on user functionality.
- > Compare performance between Cool Coat and a control coat, analyzing temperature, efficiency, and wearer comfort.
- > Evaluate the effectiveness of the Cool Coat in cooling distribution.
- > Identify areas for improvement for future iterations.

Research Design and Methods

Design & Fabrication: Introducing the Cool Coat with integrated carbon veil fabric, thermoelectric elements, and controlled by an app, alongside a basic control coat for comparison.

Experimental Setup: Using infrared cameras, the performance of both coats is assessed during light, medium, and heavy exercise scenarios.

Data Analysis: Detailed evaluation of the Cool Coat's thermal efficiency and comfort against the control coat with statistical insights.

Preliminary results

Fans jacket

Thermoelectric device

Infrared camera FLIR T640

Carbon veil + cooling

Expected results

- Coat shows superior thermal management to control compared coat, regulating temperature reducing heat risks.
- > Novel approach of wearable thermal management utilizing veil, thermoelectric devices, and fans.
- > Potential to transform personal thermal management with a cost-effective, lightweight, and user-friendly design.
- > Prospect of influencing future wearable tech advancements, boosting safety and health in demanding conditions.

Future directions

- > Scale up production exploration
- > Real-time temperature tracking and notifications.

Acknowledgement

This research study is supported by the NIOSH through the PRP Training Program of UC ERC Center Grant G100122.

References

- 1. Kanan et al, Automation in Construction 88 (2018): 73-86.
- 2. Chen et al, Aiha Journal 643 (2003): 352-359.