Esophageal Cancer

Valerie A. Williams, MD
Division of Thoracic Surgery
September 29, 2011
The Esophagus

- A muscular pump bordered by 2 sphincters
- One function: Transport

 The unidirectional (aboral) movement of food/saliva

- No endocrine, exocrine, immunologic, digestive, absorptive or secretory functions
Presenting Symptoms

- Dysphagia
- Odynophagia / chest pain
- Weight loss
- Hematemesis
- Others
Overview

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Demo-graphics</th>
<th>Risk Factors</th>
<th>Location</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squamous carcinoma</td>
<td>Black Males</td>
<td>Etoh Smoking Diet-nitrosamines</td>
<td>Proximal and Mid Esophagus</td>
<td>Declining</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>White Males</td>
<td>Barrett’s</td>
<td>Lower esophagus</td>
<td>Increasing</td>
</tr>
</tbody>
</table>
Squamous Cell Carcinoma

Incidence by Geographic Location

Cases per 100,000

- US and Britain
- South Africa and China
- Kazakhstan
Histology and Esophageal Cancer Incidence (1975–2001)

Relative Change in Incidence of Esophageal Adenocarcinoma and Other Malignancies (1975–2001)

Evolution of Esophageal Cancer

- In the U.S. and western Europe, the incidence of adenocarcinoma of the distal esophagus, GE junction and gastric cardia has increased by approximately 10% / yr over the past 30 years (now 10x incidence compared to 1976.)
- 70-75% of all esophageal CA in the U.S. is now adenocarcinoma.
Esophageal Cancer

2010 Estimates

- 16,640 new cases diagnosed in the U.S.
 ~ 70% adenocarcinoma (~11,000+ cases)
- 14,500 deaths
- 5-year relative survival (2001-2007) = 16.8%
- Median age (2004-2008) = 68 years

NCI SEER Database, 2010
Estimated US Cancer Deaths

Men 290,890
- Lung & bronchus 32%
- Prostate 10%
- Colon & rectum 10%
- Pancreas 5%
- Leukemia 5%
- Non-Hodgkin lymphoma 4%
- Esophagus 4%
- Liver & intrahepatic bile duct 3%
- Urinary bladder 3%
- Kidney 3%
- All other sites 21%

Women 272,810
- Lung & bronchus 25%
- Breast 15%
- Colon & rectum 10%
- Ovary 6%
- Pancreas 6%
- Leukemia 4%
- Non-Hodgkin lymphoma 3%
- Uterine corpus 3%
- Multiple myeloma 2%
- Brain/ONS 2%
- All other sites 24%
Why the Increase in Esophageal Adenocarcinoma?

- GERD?
- Acid suppression therapy?
- Obesity/diet?
- *Helicobacter pylori* eradication?
Persons with recurrent GERD symptoms have an 8-fold increase in the risk of developing esophageal adenocarcinoma

Carcinogenesis Sequence

GERD
(Reflux of gastric/duodenal contents)

Squamous epithelial injury

Intestinal metaplasia of mucosa
(Barrett’s)

Low-grade dysplasia

High-grade dysplasia

Invasive carcinoma
Barrett’s Esophagus

Definition

- Defined as any length of endoscopically visible columnar mucosa extending onto the esophagus
- PLUS *intestinal metaplasia* on histologic examination
 - Short-segment: < 3cm
 - Long-segment: ≥ 3cm
Barrett’s Esophagus
Barrett’s Esophagus

Carcinogenesis Sequence

No dysplasia

→ Low-grade dysplasia

→ High-grade dysplasia

→ Invasive carcinoma
Barrett’s Esophagus
Surgical Considerations

- No dysplasia
 - Anti-reflux Surgery
 - Low-grade dysplasia
 - High-grade dysplasia
 - Esophagectomy
 - Invasive carcinoma
Barrett’s Esophagus
Management Controversies

- **Screening**
 - Baseline endoscopy on patients with GERD
 - When?
 - How often?

- **Surveillance**
 - Serial endoscopies on patients with known BE to R/O progression to dysplasia/CA
 - How often?
 - Are lives saved?

- **Ablation**
Pre-Operative Investigations for Esophageal Carcinoma

- Flexible upper endoscopy with biopsies
- Barium UGI
- Computed tomography (CT)
- Endoscopic ultrasound (EUS)
- PET
Diagnosis & Staging

- 50 y/o male
- Dysphagia
EGD with biopsy
Chest/Abdominal CT

- Evaluate for T4 disease and metastasis
PET/CT Scan

- Radioactive sugar – (fluorodeoxyglucose) is injected into the blood.
- Uptaken by rapidly growing and active cells absorb large.
PET Scan

Liver Metastasis

Primary tumor
T-stage/Depth of invasion

- **Tis**: Intraepithelial
- **T₁**: Invades submucosa
- **T₂**: Invades muscularis propria
- **T₃**: Invades paraesophageal tissue
- **T₄**: Invades adjacent organ
Endoscopic Ultrasonography (EUS)
EUS
EUS
Comparison EUS vs Pathology
Proportion Correctly Predicted by EUS

76.5% 82.4%
Critical Barriers

Basement Membrane Barrier
- Invasive cancer
- Node rarely involved
- Systemic disease rare (< 2%)
- 5yr. Survival = 90%

Muscularis Mucosa Barrier
- Nodes likely involved (25%)
- Few in number (0-5)
- Systemic disease possible (17-25%)
- 5yr. Survival = 75%

Adventitial Barrier
- Nodes commonly involved (85%)
- Many in number (3-14)
- Systemic disease common (60-75%)
- 5yr. Survival = 30%
N Stage

N0 no lymph nodes

N1 1-2 lymph nodes

N2 3-6 lymph nodes

N3 7 or more lymph nodes
Progression of Carcinoma

Implications for Therapy

- Local → Regional → Systemic
- Surgery → ChemoTx + Surgery → ChemoRadTx
 (+/- XRT)
1913 1st Successful Esophagectomy
by Franz John A. Torek

- Transthoracic esophagectomy
- 67-year-old woman who presented with progressive dysphagia and weight loss.
1913 1st Successful Esophagectomy

- Patient was fed through the gastrostomy tube for the first 8 post-op days

- Later received nutrition orally.

- Meal passed from the proximal esophageal stoma through an external tube to the gastrostomy

- Patient survived for 12 years
Surgical Resection

- Prepare conduit - stomach
- Mobilize esophagus
- Divide esophagus proximally and stomach distally
- 5cm margins
- Anastomosis between esophagus and stomach
- Pyloroplasty
Esophagectomy Options

<table>
<thead>
<tr>
<th>Less Invasive</th>
<th>More Invasive</th>
</tr>
</thead>
<tbody>
<tr>
<td>- “Minimally invasive” esophagectomy</td>
<td>- Radical (en bloc) esophagectomy</td>
</tr>
<tr>
<td>- Transhiatal esophagectomy</td>
<td>- with 2-field lymphadenectomy</td>
</tr>
<tr>
<td>- Ivor Lewis Esophagectomy</td>
<td>- with 3-field lymphadenectomy</td>
</tr>
<tr>
<td>Right thoracotomy, laparotomy, intrathoracic esophagogastrostomy</td>
<td></td>
</tr>
<tr>
<td>- 3 hole esophagectomy</td>
<td></td>
</tr>
<tr>
<td>Right thoracotomy, laparotomy, cervical esophagogastrostomy</td>
<td></td>
</tr>
</tbody>
</table>

en bloc refers to the removal of the affected esophagus as a single unit, including all associated lymph nodes.
Transhiatal Esophagectomy
Transhiatal Esophagectomy
Gastric conduit
Transhiatal Esophagectomy

Advantages
- Avoid thoracotomy
- Cervical anastomosis

Disadvantages
- Blind mediastinal dissection
- Less accurate staging
- Inferior treatment/less lymphadenectomy
Transthoracic (Ivor Lewis)

Advantages
- Complete 2 – field lymphadenectomy
- Less risk of blind mediastinal dissection

Disadvantages
- Increased morbidity of thoracotomy
- Intrathoracic leak has higher morbidity
3-hole Esophagectomy
Colon interposition
Surgical Resection Complications

- Anastomotic leak
- Pulmonary complications
- Chylothorax
- Recurrent laryngeal nerve injury
- Airway injury
<table>
<thead>
<tr>
<th>Esophagectomies per year</th>
<th>Operative Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>24</td>
</tr>
<tr>
<td>2-4</td>
<td>20</td>
</tr>
<tr>
<td>5-7</td>
<td>16</td>
</tr>
<tr>
<td>8-19</td>
<td>12</td>
</tr>
<tr>
<td>>19</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institution</th>
<th>Resection Type*</th>
<th>Year</th>
<th>N</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigham</td>
<td>TTE</td>
<td>2001</td>
<td>250</td>
<td>3.6</td>
</tr>
<tr>
<td>Cornell</td>
<td>3-field en bloc</td>
<td>2002</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>University of Rochester</td>
<td>THE/TTE</td>
<td>2008</td>
<td>258</td>
<td>2.7</td>
</tr>
</tbody>
</table>

*THE-Transhiatal esophagectomy; TTE-Transsthoracic esophagectomy;
Mortality following esophagectomy

- The perception: High
- The reality: Not in experienced hands
 Not in the right patient population
Evolution in Resection for Early Esophageal Neoplasia

Emphasis on Decreased Morbidity and Improved Quality of Life

- Transthoracic esophagectomy (TTE)
- Transhiatal esophagectomy (THE)
- Minimally invasive esophagectomy (MIE)
- Endoscopic resection (ER) (and ablation)
Methods to Eliminate Esophageal Mucosa

“Burn it”
- Thermal
 - MPEC
 - APC
 - Nd:YAG laser
 - RF ablation (BarrX)

“Freeze it”
- Cryotherapy

“Laser it”
- PDT (photodynamic therapy)
- Mucosectomy

“Resect it”
- Endoscopic
- Surgical
I. Endoscopic Mucosal Resection (EMR)
Techniques of EMR

Risks of EMR

1) Procedural Complications
 - Perforation
 - Stricture
 - Bleeding

2) Inadequate Treatment
 - Positive margins (deep or lateral)
 - Untreated synchronous lesions
 - Associated nodal disease
II. Radiofrequency Ablation of Barrett’s Esophagus

- HALO360 and HALO90 systems
 (BÂRRX Medical)
HALO RF Energy Generator
HALO360 Ablation Catheter
Muscularis mucosae (Ablation Target Depth)

Submucosa with esophageal glands

Muscularis propria

RF ablation depth (avoids stricture)

EMR and PDT Depth

Surgical Depth
Endoscopic Appearance

Baseline, 4 cm IM

Immediate Slough
Effect of RF Ablation

Barrett’s with LGD (Pretreatment)

12 Months Post-Treatment
Potentially Curative Endoscopic Therapies for Early Esophageal Neoplasia

III. Cryotherapy
CryoSpray Ablation™
Surgery For Esophageal Cancer

- The incidence of esophageal adenocarcinoma continues to rise at an alarming rate!
- Esophageal adenocarcinoma is related to Barrett’s esophagus which, in turn, is related to GERD.
- “Improvements” in the medical therapy for GERD have done nothing to halt the progression of esophageal CA.
Surgery For Esophageal Cancer

- In experienced hands, esophagectomy can be performed safely and with good quality of life.
- Esophagectomy, alone or in combination with chemoTx/XRT, remains the gold standard of treatment for potentially curable disease.
- Endoscopic therapies are evolving as curative therapy for early esophageal cancer when the potential for nodal metastasis is low.
Treatment of Esophageal Cancer

The Future

- Improved prognosis will depend upon:
 - Improved prevention (control of GERD)
 - Improved screening, earlier detection
 - Improved systemic therapies!
Treatment of Esophageal Cancer

The Future

- Improved chemotherapy, immunotherapy or cytologic regimens
- Tumor markers to predict potential for nodal/systemic spread, prognosis and the response to chemotherapy
The End