Expression of the **APC** Tumor Suppressor Gene is Regulated during Mammary Gland Development and Differentiation

Tecumseh Bryson
Kimberly R. Becher
Kathleen H. Goss

Department of Surgery, University of Cincinnati College of Medicine

Background and Purpose: With almost 270,000 new cases of breast cancer and over 40,000 deaths, breast cancer is one of the greatest health concerns facing women. The **APC** tumor suppressor gene has been shown to be inactivated in as many as 40% of sporadic breast cancers, and mice carrying a germline mutation in **Apc** are predisposed to mammary tumors. Our laboratory has shown previously that **APC** expression is induced during pregnancy and lactation in the mouse mammary gland, and **Apc**-deficiency results in defective lobulo-alveolar development. The current project tests the hypothesis that **APC** expression is regulated by lactogenic hormones both *in vitro* and *in vivo*.

Methods: In the *in vitro* study, we exposed EpH4 mouse mammary epithelial cells to 10 nM 17β-estradiol, 10 nM 17β-estradiol with 100 nM progesterone, 50 ng prolactin in saline or vehicle (sesame seed oil with saline) for 4, 24 or 48 h. Total RNA was harvested from the cells. **APC** and **GAPDH** (as a normalization control) were amplified using Reverse-transcriptase (RT) real-time PCR to quantify gene expression. For the *in vivo* studies, ovariectomized C57BL/6 (strain) mice (n=7/group) were treated with daily injections of 1cc for 20 days. Mammary tissue was harvested and RNA was isolated. **APC** and **GAPDH** gene expression were evaluated by real-time RT-PCR.

Results: EpH4 cells exposed to lactogenic hormone for 4 h demonstrated an increase in **APC** expression, particularly in the 17β-estradiol and progesterone treated cells, compared to those treated with vehicle. At 24 and 48 h there were no obvious differences in **APC** expression between the treatment groups. Additionally, we observed that mammary tissues from mice treated with estradiol and progesterone had increased **APC** mRNA expression compared to those mice treated with vehicle or estrogen alone.

Conclusions: These data suggest that expression of the **APC** tumor suppressor gene is regulated by lactogenic hormones in the mammary gland, and support a model in which **APC** is an important regulator of mammary gland function during pregnancy and lactation.