Keloid keratinocyte proliferation and gene expression changes with exposure to omega-3 fatty acids

<u>Saranya Sethuraman</u>¹, Jennifer Hahn¹, Dorothy Supp¹;

1Shriner's Hospital for Children-Cincinnati

Background

Keloid scars are often refractory to current treatments. Prolonged inflammation is thought to contribute to keloid scar development. Omega-3 polyunsaturated fatty acids (ω -3-PUFAs), such as eicosapentaenoic acid (EPA) and docosohexaenoic acid (DHA), are nutritional supplements and have anti-inflammatory effects *in vitro* and *in vivo*. Traditional West African medicine uses ω -3-PUFAs to prevent and reduce keloid scarring. Previous studies focused on ω -3-PUFA effects on keloid fibroblasts.

Aims/Hypothesis

We focused on keloid keratinocytes, which influence fibroblasts via paracrine interactions, to investigate gene expression and proliferation changes upon ω -3-PUFA treatment. Genes analyzed included IL1RN (IL-1 receptor antagonist), PTGS2 (cyclooxygenase-2), and IL1A (IL-1-alpha).

Methods

Two keloid and two normal keratinocyte cell strains obtained with IRB approval from patients at Shriner's Hospital for Children-Cincinnati and University of Cincinnati Medical Center were incubated 24 hours with EPA or DHA (0, 5, and $20\mu M$); proliferation was quantified by counting cells. Gene expression was measured using quantitative PCR. The housekeeping gene GAPDH was used to normalize gene expression. One-way ANOVA and Holm-Sidak pairwise comparisons were used to determine statistical significance.

Results

Media containing $20\mu M$ DHA reduced cell growth for all cell strains (p<0.05); $20\mu M$ EPA reduced cell growth for both keloid and one normal cell strain (p<0.01). Incubation with $20\mu M$ DHA increased IL1RN expression in one normal and one keloid strain (p<0.04) while increasing PTGS2 expression in the same strains (p=0.001). Incubation with $20\mu M$ EPA increased expression of IL1RN and IL1A in one normal strain (p<0.05) and increased PTGS2 expression in both normal strains (p<0.04).

Conclusions

Although ω -3-PUFAs act as anti-inflammatory mediators in other inflammatory diseases, this small sample suggests that high doses of ω -3-PUFAs are cytotoxic to normal and keloid keratinocytes. ω -3-PUFAs variably affected expression of pro-inflammatory mediators IL1A and PTGS2 and anti-inflammatory molecule IL1RN in normal and keloid keratinocytes. The effects of ω -3-PUFAs on gene expression may be related to individual genetic variation rather than keloid pathology.

Acknowledgement

This study was supported in part by NIH grant T35 DK 60444.