Characterizing and Preventing Occupationally-Acquired Infectious Diseases

Rachael M. Jones, PhD, CIH

Associate Professor Industrial Hygiene Program Director School of Public Health University of Illinois at Chicago

THE UNIVERSITY OF ILLINOIS AT CHICAGO

November 7, 2017

Evidence of the Burden in Healthcare

- Pulmonary tuberculosis
 - Surveillance
- Emerging infectious diseases
 - Novelty
 - Significant morbidity and mortality
- Crazy infections among laboratory workers

Endemic diseases? Not so much information.

What Protects Healthcare Workers?

THE UNIVERSITY OF ILLINOIS AT CHICAGO

UIC

What regulations apply to infectious diseases among workers in healthcare settings?

Image from: https://www.cdc.gov/niosh/topics/hierarchy/

Personal Protective Equipment

The Infectious Diseases Standard

A proposed <u>programmatic</u> standard from the Occupational Safety and Health Administration that would require healthcare facilities to:

- Develop and implement a program
- Assess infection risks for work tasks
- Select and implement control strategies

In rulemaking, OSHA must estimate the costs and benefits of standard

THE UNIVERSITY OF ILLINOIS AT CHICAGO

Risk Analysis

- Hazard Identification
 The agent/exposure route
- Exposure Assessment
 - The dose received
- Dose-Response Assessment
 - The probability of infection
- Risk Characterization & Management

— Is this a 'high' risk, and how can it be reduced

Methodological Approach

1. Determine the number of occupational exposures

- Number of people with the disease annually,
- Healthcare utilization for the disease, and
- Worker time-activity patterns

2. Determine the probability of infection during an exposure

- Model pathogen transport to susceptible sites
- Consider infection control interventions
- Apply dose-response function

3. Determine the annual burden

- Number of exposures for each worker
- Calculate cumulative probability of infection
- Calculate mean number of infections
- Consider vaccination

THE UNIVERSITY OF ILLINOIS AT CHICAGO

Annual Number of Exposures

Setting	Tuberculosis	Influenza
Ambulatory Care	108,000	31,500,000
Emergency Department	4,500	1,140,000
Hospitals	930,800	7,690,000
TOTAL	1,043,000	81,800,000

Number of exposures and workers exposed varies among and by disease

~ 1 TB exposure on average, per year ~ 7 influenza exposure on average, per year

Jones and Xia (2016) Occupational exposures to influenza among healthcare workers in the United States. *JOEH 13: 213* Jones (2017) Burden of occupationally-acquired pulmonary tuberculosis among healthcare workers in the United States: A Risk Analysis *Ann Work Exp Health.* 61: 141-151

Exposure Models

Tuberculosis: Airborne

2. Exhausted 1. Room Air Lost Viability Surfaces 5. HCW's Respiratory Tract UNIVER! ILLINOIS

Influenza: Droplet and Contact

AT **CHICAGO**

THE

Dose-Response Models

Tuberculosis

Two exponential models:

- 1. Wells-Riley ($\kappa = 1$)
- 2. Saini et al. (κ = 0.38)

Influenza

An exponential model:

• Alford (κ = 0.18)

A 3-parameter Beta-Poisson model:

• Watanabe et al. (α = 0.295, N₅₀ = 4.42 × 10⁵, and γ = 1.07 × 10³)

THE UNIVERSITY OF ILLINOIS AT CHICAGO

Estimated Burden Hospitals/EDs

	Current Compliance	Full Compliance	Infections Avoided
Tuberculosis			
Wells DR	5,013 (3,557, 6,285)	3,214 (2,273, 4,038)	~ 1800
Saini DR	2,146 (1,738-3,055)	1,480 (1,038, 1881)	~650
Influenza			
Alford DR	151,300 (115,300, 181,500)	101,700 (77,810, 121,900)	~50,000
Watanabe DR	34,150 (26,950, 40,900)	24,680 (19,650, 29,460)	~9,000
• Estimate	2.5% of occupational	TB infections progres	s to disease

• About 40% of influenza infections are symptomatic

CHICAGO

Droplet vs. Airborne Transmission

Characteristic	Droplet	Airborne
Distance form source	< 3 feet	A 'long' distance
Particle sizes	Large droplets ≥ 50 µm	Droplet nuclei < 5µm
Exposure route	Projection onto facial mucous membranes	Inhalation

Does this distinction reflect the physical processes?

THE UNIVERSITY OF ILLINOIS AT CHICAGO

UIC

Aerosol Exposures

Jones and Brosseau (2015) Aerosol transmission of infectious disease *J Occup Environ Med* 57: 501-508 Figures by Carlyn Iverson

Aerosol Exposures

THE UNIVERS ILLINOIS AT CHICAGO

Aerosol Exposures

THE UNIVERS ILLINOIS AT CHICAGO

Aerosol Transmission of Ebola?

- Aerosol source: AGPs, vomiting, toilet flushing
- Susceptible sites:
 Epithelial tissue

THE UNIVERSITY OF ILLINOIS AT CHICAGO

UIC

UIC Epicenter for Prevention of Healthcare Associated Infections

School of Public Health

- Lisa Brosseau, ScD
- Adam Cox, BX
- Yuwa Edomwandae
- Charissa Fritzen-Pedicini, MSPH
- Yu-Kai Huang, MS
- Rachael M. Jones, PhD
- Linh Phan, MS
- Rachel Weber, BS

Alums: Yu-min Su, MS Donna Moritz, MD Agnes Kalat, MPH Kyle Cambell, BA

College of Medicine

- Susan Bleasdale, MD
- Dayana Maita, MD
- Monica Sikka, MD
- Rachel Yudkowsky, MD

Exposures during Body Fluid Cleaning

Aim 1: Measure the magnitude and determinants of pathogen emission and fate in healthcare settings

- Recruited 7 Environmental Service Worker participants
- Four experimental conditions:
 - High or low viscosity fluorescent simulated vomitus
 - Spilled on side of gurney or floor
 - Total of 21 experimental trials and 9 blank trials
- Participants instructed to clean the vomitus using normal procedures:
 - Tools: Microfiber mops and towels (moist and dry), squirt bottle of disinfectant, disposable wipes, cleaning cart
 - PPE: gloves, shoe covers, facemasks, N95 FFR, safety glasses

THE UNIVERSITY OF ILLINOIS AT CHICAGO

Su et al. (2017) *Am J Infect Control* doi: 10.1016/j.ajic.2017.07.005; Phan et al (2017) *Am J Infect Control*. In press.

What the Participant Can't See

THE UNI ILLINUIS AT CHICAGO

UIC

Participants clean using normal practices

Contacts recorded from videos

Image: solution of the solution of

Experimental Trial 173A: Low Viscosity Vomitus on Gurney Before and After Cleaning

Cleaning is not always perfect!

High Viscosity Vomitus

Observed and quantified contamination on participants bodies after cleaning

THE UNIVERSITY OF ILLINOIS AT CHICAGO

UIC

Measurement Devices

UIC

Sioutas impactor samples particles from air and separates them into five size bins.

3M Sponge sick samples material from surfaces.

Environmental Surface Contacts

CHICAGO

UIC

Total contacts per trial: 6-65, median 20

Self Contacts during Cleaning

Contacts to Body

- In 8 of 21 (38%) trials
 - Range 1-15 per trial
 - Range 3-122 per hour
- By 4 of 7 (57%) participants
- Driven by adjustments of clothing

Contacts to Face

- In 4 or 21 (19%) trials
 - Range 1-3 per trial
 - Range 4-20 per hour
- By 3 of 7 (42%) participants

Contacts with PPE Doffing: Pending

ERSITY OF

NOIS

Body Contamination

 Gloves were always contaminated, most on the palm of the right hand

Not associated with contact patterns

- Bottom of shoe covers were always contaminated, sometimes the top
- Contamination on rest of the body was rare and associated with specific actions,:

– Kneeling

THE UNIVERSITY OF ILLINOIS AT CHICAGO

Residual Floor Contamination

Extent of Floor Contamination After Cleaning	Percent (#)
Worse	26% (5)
Partially Clean	32% (6)
Fully Clean	42% (8)

Low viscosity trials had more fluorescein remaining on the floor

 All participants removed material from the floor, but some increased the area contaminated

• Why?

- Underestimated area contaminated
- Didn't clean under gurney
- Didn't follow procedure
- Good cleaning was associated with using towels to pick up bulk fluid

Workers also contaminated the cleaning cart!

VERSITY OF

NOIS

CAGO

Aerosol Formation

Sampler Stage (Particle Size)	% Non- Detected	Mean Fluorescein Concentration Detected (μg/m ³)
A (> 2.5µm)	56%	0.04
B (1-2.5 μm)	63%	0.55
C (0.5-1 μm)	75%	0.71
D (0.25-0.5 μm)	81%	0.26
E (< 0.25 μm)	69%	0.03

THE UNIVERSITY OF ILLINOIS AT CHICAGO

UIC

Initial analysis of real-time particle concentration data similarly <u>do not indicate high levels of aerosol formation</u> during cleaning

Ongoing Research

Simulation Studies

- Bathing Patients
- Central Line Catheterization
- Intubation
- Endotracheal Suctioning
- Physical Exam/Vitals

Observation Studies

- Care delivery for patients with respiratory infections
- Bronchoscopy procedures
- Clinical microbiology laboratory work activities
- Measurements:
 - Pathogens in air/surfaces
 - Contact patterns
 - Workers/activities
 - Patient characteristics

Acknowledgements

• The infectious disease burden work was funded by Eastern Research Group, Inc.

– Yu-lin Xia, Yu-kai Huang and Yu-min Su

The aerosol transmission work was unfunded

Lisa Brosseau

• The experimental work is funded by the CDC Epicenter Prevention Program, Cooperative Agreement 1U54CK000445-01

Linh Phan, Yu-min Su, Rachel Weber, Charissa Fritzen-Pedicini