Arterial Blood Gases
Arterial Blood Gases

PO$_2$
SO$_2$
- measured
- calculated
- pulse oximetry

PCO$_2$
- ventilation

pH
BE/BD
HCO$_3^-$
- venous CO$_2$

Acid-base
oxygenation
Arterial PO$_2$ (PaO$_2$)

- Normal: 80 – 100 mm Hg breathing room air at sea level in healthy young adults (103- 0.5 x age)

- PaO$_2$ affected by
 - FIO$_2$ PEEP Lung function
 - Age Ventilation Altitude

\[
\text{PAO}_2 = \text{FIO}_2(\text{P}_B - \text{PH}_2\text{O}) - \text{PaCO}_2 \times 1.2
\]

\[
\text{PAO}_2 = \text{FIO}_2(700) - \text{PaCO}_2 \times 1.2
\]

Always interpret PaO$_2$ in relation to FIO$_2$.
Oxyhemoglobin Dissociation Curve

Oxygen saturation (%) vs. PO₂ (mm Hg)

- Oxygen saturation increases as PO₂ increases.
- The curve shows the relationship between oxygen saturation and PO₂, with the maximum saturation occurring at a PO₂ of approximately 100 mm Hg.
PaO$_2$/SaO$_2$

Shifting of the Oxyhemoglobin Dissociation curve
- Temperature
- pH
- 2,3-DPG (stored blood loses 2,3-DPG)
- Dyshemoglobins (carboxy, fetal, methhgb)

Shift to left facilitates Oxygen loading
Shift to right facilitates Oxygen unloading
PaO$_2$/SaO$_2$

- 30 mm Hg = 60% saturation
- 60 mm Hg = 90% saturation
- 40 mmHg = 75% saturation

Oxygen delivery = Oxygen content \times cardiac output

Oxygen content = PaO$_2$ (0.003) + Hgb(1.34)%sat

Once PaO$_2$ exceeds 70 mmHg further increases do not increase oxygen delivery
Arterial PCO₂ (PaCO₂)

- Normal: 35 to 45 mm Hg
- ↑PaCO₂ = hypoventilation
 - Respiratory center depression
 - Neuromuscular disease
 - Pulmonary disease
- ↓PaCO₂ = hyperventilation
 - Central
 - Pain
 - Anxiety
 - Iatrogenic
Acid-Base Balance

\[\text{pH} \approx \frac{\text{HCO}_3^-}{\text{PCO}_2} \]

When \(\text{HCO}_3^- \) is 24 mmol/L and \(\text{PaCO}_2 \) is 40 mm Hg, the pH is 7.40
Normal Values

- pH 7.35 – 7.45
- PaCO2 35-45 mmHg
- HCO3- 22-26 meq/L
- BE/BD –2 to +2
- Base Excess or Base Deficit reflects the non-respiratory portion of acid-base balance
- Includes RBC buffering
Acid-Base Disorders

- **Primary disturbance**
 - **Acidosis**: pH < 7.35
 - Respiratory: \uparrow PaCO$_2$
 - Metabolic: \downarrow HCO$_3^-$
 - BE: normal
 - **Alkalosis**: pH > 7.45
 - Respiratory: \downarrow PaCO$_2$
 - Metabolic: \uparrow HCO$_3^-$
 - BE: normal
Acid-Base Disorders

Rules

For a 0.08 change in pH – PaCO₂ changes 10 mmHg

7.40 40 7.32 50 7.48 30

Respiratory compensation is rapid

Metabolic compensation is slow
Acid-Base Disorders

- **Compensation**
 - Change in PaCO₂ to correct pH with metabolic acid-base imbalance
 - e.g., hyperventilation occurs with metabolic acidosis
 - Change in HCO₃⁻ to correct pH with respiratory acid-base imbalance
 - e.g., HCO₃⁻ increases with respiratory acidosis

\[
\leftrightarrow \text{pH} \approx \frac{\text{HCO}_3^-}{\text{PCO}_2} \downarrow \uparrow
\]
Respiratory Acidosis

- **Uncompensated**: ↓ pH, ↑ PaCO$_2$, nl BE, HCO$_3^-$
- **Compensated**: nl pH, ↑ PaCO$_2$, ↑ BE, HCO$_3^-$
- **Causes**: respiratory center depression, neuromuscular disease, lung disease
- **Treatment**: treat cause, mechanical ventilation, buffers
Respiratory Alkalosis

- Uncompensated: \uparrow pH, \downarrow PaCO$_2$, nl BE, HCO$_3^-$
- Compensated: nl pH, \downarrow PaCO$_2$, \downarrowBE, HCO$_3^-$
- Causes: respiratory center stimulation, iatrogenic
- Treatment: treat cause
Metabolic Alkalosis

- Uncompensated: ↑ pH, ↑ HCO$_3^-$, nl PaCO$_2$
- Compensated: nl pH, ↑ HCO$_3^-$, ↑ PaCO$_2$
- Causes: hypokalemia, nasogastric suctioning or vomiting, contraction alkalosis, bicarbonate administration, steroid therapy
- Treatment: treat cause, KCl, volume, diamox, NH$_4$Cl, arginine monohydrochloride, HCl
Metabolic Acidosis

- **Uncompensated**: ↓ pH, ↓ HCO$_3^-$, nl PaCO$_2$
- **Compensated**: nl pH, ↓ HCO$_3^-$, ↓ PaCO$_2$
- **Causes**: hypoxia (lactic acidosis), diabetes (ketoacidosis), renal failure (uremic acidosis), GI loss of HCO$_3^-$ (diarrhea), renal loss of HCO$_3^-$ (renal tubular acidosis, diamox), poisons (aspirin, methanol, ethylene glycol)
- **Treatment**: treat cause, buffer
Acid-Base Interpretation

- Classify the disturbance: acidosis, alkalosis, metabolic, respiratory
- Determine the degree of compensation: uncompensated, partially compensated, fully compensated
- Identify the cause of the disturbance
- Develop a treatment plan
Acid-Base Interpretation

<table>
<thead>
<tr>
<th>Disorder</th>
<th>pH</th>
<th>PaCO\textsubscript{2}</th>
<th>HCO\textsubscript{3}-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory acidosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncompensated</td>
<td>↓↓</td>
<td>↑↑</td>
<td>N</td>
</tr>
<tr>
<td>Partially compensated</td>
<td>↓</td>
<td>↑↑</td>
<td>↑</td>
</tr>
<tr>
<td>Fully compensated</td>
<td>N</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Respiratory alkalosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncompensated</td>
<td>↑↑</td>
<td>↓↓</td>
<td>N</td>
</tr>
<tr>
<td>Partially compensated</td>
<td>↑</td>
<td>↓↓</td>
<td>↓</td>
</tr>
<tr>
<td>Fully compensated</td>
<td>N</td>
<td>↓↓</td>
<td>↓↓</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncompensated</td>
<td>↓↓</td>
<td>N</td>
<td>↓↓</td>
</tr>
<tr>
<td>Partially compensated</td>
<td>↓</td>
<td>↓</td>
<td>↓↓</td>
</tr>
<tr>
<td>Fully compensated</td>
<td>N</td>
<td>↓↓</td>
<td>↓↓</td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncompensated</td>
<td>↑↑</td>
<td>N</td>
<td>↑↑</td>
</tr>
<tr>
<td>Partially compensated</td>
<td>↑</td>
<td>↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Fully compensated</td>
<td>N</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
</tbody>
</table>
Test Your Skills

\[\text{pH} = 7.25 \]
\[\text{PaCO}_2 = 57 \]
\[\text{HCO}_3^- = 24 \]

\[\downarrow \text{pH} \approx \frac{\text{HCO}_3^-}{\text{PCO}_2} \]
Test Your Skills

pH = 7.25
PaCO₂ = 40
HCO₃⁻ = 17

\[
pH \approx \frac{\text{HCO}_3^-}{\text{PCO}_2}
\]
Test Your Skills

\[
\text{pH} = 7.38 \\
\text{PaCO}_2 = 60 \\
\text{HCO}_3^- = 34
\]

\[\leftrightarrow \text{pH} \approx \frac{\text{HCO}_3^-}{\text{PCO}_2} \uparrow \uparrow \]
Test Your Skills

\[
pH = 7.28 \\
\text{PaCO}_2 = 28 \\
\text{HCO}_3^- = 13
\]

\[
pH \approx \frac{\text{HCO}_3^-}{\text{PCO}_2}
\]
Mechanical Ventilation

- Variables
- Mode
- FIO2 and PEEP
- Tidal Volume and frequency
- I:E ratio, inspiratory time
Mode

- **CMV or assist control** – every breath is the same volume or pressure, time
- **IMV** – spontaneous breaths are allowed between mandatory breaths
- **Pressure support** – a set pressure is delivered with each breath the patient takes (a boost)
- **CPAP/PEEP** – elevated end expiratory pressure
Tidal Volume & Frequency

- Control minute ventilation & PaCO$_2$
- $V_E = f \times V_T$
- PaCO$_2 = VCO_2/V_A$
- $V_A = V_T - Vds$
- Postop – 8-12 mL/kg
- Restrictive – 4-8 mL/kg
- Obstructive – 8-10 mL/kg
Tidal Volume – Weight & Height

The major determinant of lung volume is height not weight

Women – 45.5 + 2.3 (Ht in inches -60)

Men - 50 + 2.3 (Ht in inches – 60)

Modify tidal volume to maintain airway plateau pressure < 30 cm H2O
PEEP and FIO2

- Control oxygenation
- FIO₂ start at 100% and move down using SpO₂
- PEEP – 5 cm H₂O minimum
- ARDS – 10 – 20 cm H₂O
- COPD – 5-10 cm H₂O
- PEEP is titrated to oxygenation, lung mechanics, oxygen delivery or other clinician determined endpoints
Writing Ventilator Orders

- Mode (A/C, IMV, PSV)
- Pressure or tidal volume
- Frequency
- FIO2
- PEEP
- Goals of support

Better to write adjust FIO2 to maintain SpO2 > 92% then to write six orders to reduce FIO2
Terminology

- Weaning implies the gradual withdrawal of support
- Liberation from mechanical ventilation is more appropriate
- Liberation may not require weaning
- Extubation is removal of the ET tube
- Decannulation is removal of the tracheostomy tube
Weaning Failure

Minute Volume
pain, anxiety
sepsis, DS, VCO2

Resistive
Airway, secretions
bronchospasm

Elastic
Lung compliance
chest wall compliance
PEEPi

Ventilatory Drive
sedation, brain injury

Neuromuscular
Spinal injury,
polyneuropathy
Hyperinflation
malnutrition
electrolytes

Chest Wall
flail chest, pain
WHEANS NOT

- Wheezes
- Heart disease
- Electrolytes
- Anxiety, airway problems, alkalosis
- Neuromuscular disease
- Sepsis, sedation
- Nutrition (over and underfeeding)
- Opiates, obesity
- Thyroid disease

Ely EW, RCCNA 2000;6:303
Weaning Readiness

Daily Screen – 5 Criteria

- Patient coughs when suctioned
- No continuous vasopressor or sedative infusions
- \(\text{PaO}_2/\text{FIO}_2 > 200 \)
- PEEP \(\leq 8 \text{ cm H}_2\text{O} \)
- \(f/V_T < 105 \) for one minute

Ely NEJM 1996;335:1864
Spontaneous Breathing Trials

- All pts who pass the daily screen – SBT 30 mins

Termination of the SBT

- Resp rate > 35 for > 5 mins
- SpO2 < 90% for > 30 secs
- 20% increase or decrease in heart rate for > 5 mins
- SBP > 180 or < 90 for 60 secs consecutively
- Agitation, anxiety, diaphoresis > baseline for > 5 minutes

Ely NEJM 1996;335:1864