Epidemiologic Trends in Non-Vaccine-Type HPV after Vaccine Introduction: No Evidence for Type Replacement but Evidence for Cross-Protection

Mónica Saccucci BS1, Lili Ding PhD2, Eduardo Franco PhD3, David I. Bernstein MD MS3, Darron Brown MD4, Jessica Kahn MD, MPH2

1University of Cincinnati College of Medicine, 2Cincinnati Children’s Hospital Medical Center, 3McGill University, 4Indiana University School of Medicine

Introduction
The introduction of HPV vaccines has led to a substantial decline in the prevalence of vaccine-type HPV in community settings. However, the impact of vaccination on non-vaccine-type HPV is not well understood.

Hypotheses
An increase in non-vaccine-type HPV after vaccine introduction may suggest type replacement (a decrease in prevalence of vaccine-type HPV creates an ecological niche other types could occupy), which could adversely impact vaccine effectiveness. Conversely, a decrease in non-vaccine HPV types genetically related to vaccine-type HPV suggests cross-protection, which would enhance vaccine effectiveness.

Methods
Three cross-sectional HPV surveillance studies were conducted in 2006-2007 (N=371), 2009-2010 (N=409) and 2013-2014 (N=400). Participants were sexually active 13-26 year-old women who completed a survey and underwent cervicovaginal HPV DNA testing. We determined trends in non-vaccine-type HPV prevalence across the three waves, using logistic regression and propensity score analysis to adjust for differences in participant characteristics. Outcome variables were: 1) prevalence of all 28 non-vaccine-type HPV and 2) prevalence of HPV types genetically related to HPV16 (HPV31, 33, 35, 52, 58, 67) and HPV18 (HPV39, 45, 59, 68, 70).

Results
Vaccination rates increased from 0% to 71.3% across the three waves. Adjusted logistic regression models demonstrated that from waves 1 to 3, there was no significant increase in non-vaccine-type HPV among all women (AOR 1.17, 95% CI 0.87-1.58) or vaccinated women (AOR 1.02, 95% CI 0.73-1.42), but there was a significant increase among unvaccinated women (AOR 1.88, 95% CI 1.16-3.04). Conversely, from waves 1 to 3, there was a significant decrease in HPV types genetically related to HPV16 among all women (AOR 0.62, 95% CI 0.43-0.90) and vaccinated women (AOR 0.57, 95% CI 0.38-0.88) but not unvaccinated women (AOR 1.33, 95% CI 0.81-2.17). Genetically-related types decreased 36.1% among vaccinated women. There was no decrease from waves 1 to 3 in HPV types genetically related to HPV18.

Conclusions
These data do not demonstrate evidence of type replacement. However, the decrease in the prevalence of HPV types genetically related to HPV16 among vaccinated (but not unvaccinated) women suggests cross-protection against these types.

Acknowledgements
This study was supported by two R01s (NIAID R01 073713 and R01 AI1P4709) and NIH Grant T35DK060444.