Course number and title: 26-ENV-702 Environmental Health Seminar
Graduate Credits: 1
Instructor(s) in-charge: M.B. Rao, Ph.D.
Course type (underline all that apply): Lecture Laboratory Field Projects
Required or Elective: Required

Course Schedule:
Lecture: ___1___ hours per week ___10_meetings
Discussion: ___1___ hours per week ___10_sessions
_____ hours for informal discussion
Field Work _____ hours per week _____ _ hours per survey/project
Outside Study: ____0___ hours per week
Office Hours: __none________________

Course Assignments:
Homework: __0___ assignments
Exams: __0___ midterms / finals
Reports: ___var _ required (if student does not attend)
Project ___0___ required

Grading Policy: (Describe in sentences or formulate how grades are calculated)

Attendance at both the lecture and the discussion session is required in order to successfully complete this course. Excused absence may be granted by Graduate Studies; if unable to attend the lecture, the on-line recording of the session must be viewed and a report written.

Course Prerequisites:
None

Catalog Description: (taken from the graduate handbook)
Lectures and discussions covering a broad range of problems in environmental health led by guest lecturers considered to be leaders in their field.

Textbook and Any Related Course Materials:
None required; some quarters materials are available as handouts or on blackboard.

Blackboard:
Used at the discretion of the coordinator each quarter.

Topics Covered / Duration:
Topics covered vary by quarter. Complete listings are maintained in Graduate Studies and are posed to the website, www.eh.uc.edu. Each seminar presentation is 1 hour, followed by a 1-hour discussion session open only to students.
Course goals/objectives: (Take from course description prepared for ERC)

1. Gain an understanding of the topic presented (B1, B2, C1, C2, D1, E1)
2. Demonstrate an ability to discuss the importance of the topic and relate it to environmental and occupational health. (B2, C2,J2)
3. Appreciate the relevance of the topic to the student’s discipline in EOH (C2,J2)

Evaluation Criteria:

1. Attend lecture
2. Attend discussion (no faculty member attends to evaluate level of participation)
3. Provide written report, if sessions not attended.

Relation to Program Educational Objectives: This is a required course. The course contributes to the following Program Educational Objectives, as shown:

<table>
<thead>
<tr>
<th>Objective</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental Knowledge</td>
<td>10%</td>
</tr>
<tr>
<td>Hygiene Science</td>
<td>10%</td>
</tr>
<tr>
<td>Basic Science</td>
<td>70%</td>
</tr>
<tr>
<td>Design Skills</td>
<td>5%</td>
</tr>
<tr>
<td>Professional Skills</td>
<td>5%</td>
</tr>
<tr>
<td>Life-long Learning</td>
<td>15%</td>
</tr>
</tbody>
</table>

NOTE: EOH faculty define Hygiene Science as all the Knowledge Elements in our list other than the Basic Sciences; Design skills are the technical skills in our list, while the Professional skills are those that involve teams, management, leadership, written and oral communication, approach to stakeholders and ethics—refer to listing in What We Teach).

Is there a TA? Yes No

Is computer use expected? Yes No

Program outcomes and how they are covered in this course

For each ABET IH Program Outcome (A through L), the EOH Educational Outcomes are shown below. Upon completion of this course, students will have had the opportunity to acquire knowledge (K), skills (S) and attitudes (A) associated with each of the Educational Outcomes, as noted by underlining. Where the educational measurable outcome contributes strongly to the ABET Program Outcome, the K/S/A is shown in upper case; where the contribution is average, the k/s/a is shown in lower case letters. (Note, use the Contribution to Knowledge and Professional Skills estimates above to guide your decision. If the % is 50 or more, use upper case.)

A. Identify agents, factors and stressors generated by and/or associated with defined sources, unit operations and/or processes:

B. Describe qualitative and quantitative aspects of generation of agents, factors and stressors:

C. Understand physiological and/or toxicological interactions of
physical, chemical, biological and ergonomic agents, factors and/or stressors with the human body:

Understand the relation between exposures and health outcomes

Recognize the potential for differences in response to hazards due to personal factors among some subjects at risk of exposure and the subsequent need to modify programs and practices

D. Assess qualitative and quantitative aspects of exposure assessment, dose-response, and risk characterization based on applicable pathways and modes of entry:

Understand how to evaluate potential adverse outcomes of chemical or physical exposures, based on similarity of the exposure to documented hazards

Examine occupational hygiene aspects of emerging technologies

Understand the basic principles of exposure assessment and evaluation of engineering and non-engineering controls

Develop and implement an exposure assessment plan to evaluate potential hazards and controls that are in place

Gather, manage and analyze quantitative (e.g., measurements of exposure or system performance) and qualitative (e.g., written programs) data

E. Calculate, interpret and apply statistical and epidemiological data:

Apply epidemiologic and/or statistical concepts to the interpretation of exposure data

F. Recommend and evaluate engineering, administrative and personal protective equipment controls and/or other interventions to reduce or eliminate hazards:

Identify and recommend appropriate methods to reduce exposure (using engineering controls, personal protective equipment or administrative controls), or deficiencies in written programs and policies

Design work process/practice interventions

G. Demonstrate an understanding of applicable business and managerial practices:

Produce accurate written descriptions of occupational processes and activities, exposure assessment plans and evaluation of occupational and environmental work settings

Describe approaches to interact with higher-level decision makers in various management structures

Manage resources effectively
Display effective leadership

H. Interpret and apply applicable occupational and environmental regulations:
 - Understand, interpret and apply occupational and environmental regulations
 - Apply guidelines, standards and laws in the interpretation of quantitative and qualitative data

I. Understand fundamental aspects of safety and environmental health
 - Apply the professional code of ethics to a scenario

J. Attain recognized professional certification
 - Understand the importance of ethics in the practice of occupational and environmental hygiene
 - Understand the need for and resources available for continuing professional development after graduation

K. Conduct a research activity resulting in a report that demonstrates mastery of the subject and high level of professional and public communication skills
 - Design a research question, develop a plan and conduct research
 - Communicate effectively with a variety of stakeholders (e.g., labor, management, government, peers, safety and health professionals, allied professionals)
 - Produce a technical scientific report on research

L. Demonstrate advanced qualitative and quantitative problem-solving skills
 - Function effectively as part of a multidisciplinary team

COURSE MATERIAL AND AVAILABILITY

<table>
<thead>
<tr>
<th>Course Objectives/outcomes</th>
<th>Students</th>
<th>Instructor(s)</th>
<th>TA</th>
<th>Division</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
NOTE: Students provide feedback on individual courses through the end-of-class Department and Division evaluation survey instrument. This instrument provides feedback on the course material, organization and presentation, and perceived contribution of the course to the achievement of Program Outcomes. In addition, feedback is received from the continuing, semi-annual Question-feedback process during which students identify Best Learning Experience, Session/presentation that was an endurance test, What would make life as a student better?, If I could do it over, I would…, Opportunities I would like to have but don't seem to be available, Opportunities I would like more of, Aspects of the program the faculty should consider eliminating, Worst part of the UC program, Best part of the UC program, Other comments. A Ph.D. and M.S. student participate in Division faculty meetings. Exit surveys are conducted by the University at graduation and results are forwarded to the Chair of the Department for followup. All students are urged to participate fully in each of these activities in order to improve the educational experience.