Course number and title: 26-EIH-834 Hazardous Materials Management
Graduate Credits: 2
Instructor(s) in-charge: Margaret Kupferle, Ph.D.
Course type (underline all that apply): Lecture Laboratory Field Projects
Required or Elective: Required

Course Schedule:
Lecture: 2 hours per week 8 meetings
Discussion: 1 hour per week 4 sessions
Field Work: 12 hours per quarter 0 hours per survey/project
Outside Study: 4 hours per week
Office Hours: as requested

Course Assignments:
Homework: 0 assignments
Exams: 0 midterms / finals
Reports: 3 min. required
Project: 1 required

Grading Policy:
Grades are based equally on field trip reports, student presentations, and class participation.

Course Prerequisites:
EOH students are expected to have the equivalent of the majority of the first year classes. Other graduate students, usually from the College of Engineering can enroll in the class as an elective without any specific prerequisites.

Catalog Description:
Technical, health, economic and institutional issues in hazardous waste and materials management, including generation, storage, transportation, treatment and disposal, field trips, risk assessment, emergency response, waste minimization and computer applications.

Textbook and Any Related Course Materials:

Blackboard:
Yes. Supplemented by class handouts.

Topics Covered:
1. Legislative Background (1.5 class sessions)
2. Technical (2 class sessions)
3. Environmental Modeling (1 class session)
4. Health and Safety (1.5 class sessions)
5. Emergency Response (1 class session)
6. Field trips to hazardous waste treatment/disposal facilities and training facilities (3 class sessions)
Course Goals (and Program Outcomes):
1. Identify key features of HAZWOPER standard (H1)
2. Distinguish between the purposes of the RCRA and CERCLA/SARA laws. (H1)
3. Observe and describe TSDF/waste site operations (A1, B1, C2, D1, D2, D3, D4, D5, F1, G1, G2, G3, G4, H1, H2, J2)
4. Appraise the adequacy of the system for designating sites for the National Priority List. (B2, D6, E1, H1, H2, J1)

Evaluation Criteria:
Attendance at classes and field trips is required. Within two weeks after each field trip, a field trip report is due. A form for grading this report is attached. A presentation by the student on a hazardous materials topic selected in conjunction with the instructor is also required. A form for its evaluation is also attached. Active participation in all class.

NOTE: The ABET Program outcome is shown as a capital letter; the number designates the program specific outcome.

Relation to Program Educational Objectives:
This is a required course for all Comprehensive Practice majors. The course contributes to the following Program Educational Objectives, as shown:

X Fundamental Knowledge	_X_ Hygiene Science	60%	Basic Science	____%
X Design Skills	10%			
X Professional Skills	30%			
Life-long Learning	____%			

NOTE: EOH faculty define Hygiene Science as all the Knowledge Elements other than the Basic Sciences; Design skills are those necessary to solve real world problems. Professional skills are those that involve teams, management, leadership, written and oral communication, approach to stakeholders and ethics; life-long learning is demonstration of the need for continuing professional development.

Is there a TA? Yes No

Is computer use expected? Yes No

Program outcomes and how they are covered in this course
For each ABET IH Program Outcome (A through L), the EOH Educational Outcomes are shown below. Upon completion of this course, students will have had the opportunity to acquire knowledge (K), skills (S) and attitudes (A) associated with each of the Educational Outcomes, as noted by underlining. Where the educational measurable outcome contributes strongly to the ABET Program Outcome, the K/S/A is shown in upper case; where the contribution is average, the k/s/a is shown in lower case letters. (Note, use the Contribution to Knowledge and Professional Skills estimates above to guide your decision.)

A. Identify agents, factors and stressors generated by and/or associated with defined sources, unit operations and/or processes:
 Identify potential health hazards of workplace processes and operations

B. Describe qualitative and quantitative aspects of generation of agents, factors and stressors:
 Describe the underlying processes of the generation of hazards in occupational and environmental settings
 Describe qualitative and quantitative aspects of hazards associated with specific occupational or environmental sources

C. Understand physiological and/or toxicological interactions of physical, chemical, biological and ergonomic agents, factors and/or stressors with the human body:
Understand the relation between exposures and health outcomes

Compare and contrast the potential for differences in response to hazards due to personal factors among some subjects at risk of exposure and the subsequent need to modify programs and practices

D. Assess qualitative and quantitative aspects of exposure assessment, dose-response, and risk characterization based on applicable pathways and modes of entry:

D.1. Describe how to evaluate potential adverse outcomes of chemical or physical exposures, based on similarity of the exposure to documented hazards

D.2. Describe occupational hygiene aspects of emerging technologies

D.3. Describe the basic principles of conducting sampling and analysis for exposure assessment

D.4. Describe the basic principles of evaluating engineering and non-engineering controls to reduce exposure

D.5. Develop and implement an exposure assessment plan to evaluate potential hazards and existing controls

D.6. Gather, manage and analyze quantitative (e.g., measurements of exposure or system performance) and qualitative (e.g., written programs) data to evaluate potential hazards and existing controls in order to reduce risk

E. Calculate, interpret and apply statistical and epidemiological data:

E.1. Apply epidemiologic and/or statistical concepts to the interpretation of exposure data

F. Recommend and evaluate engineering, administrative and personal protective equipment controls and/or other interventions to reduce or eliminate hazards:

F.1. Identify and recommend appropriate methods to reduce exposure (using engineering controls, personal protective equipment or administrative controls), or deficiencies in written programs and policies

F.2. Design work process/practice interventions

G. Demonstrate an understanding of applicable business and managerial practices:

G.1. Produce accurate oral and written reports, including descriptions of occupational processes and activities, exposure assessment plans and evaluation of occupational and environmental work settings

G.2. Describe approaches to interact with higher-level decision makers in various management structures

G.3. Manage resources effectively

G.4. Display effective leadership
H. Interpret and apply applicable occupational and environmental regulations:
 Understand, interpret and apply occupational and environmental regulations
 Apply guidelines, standards and laws in interpreting qualitative and quantitative data for exposure assessment for risk characterization

I. Understand fundamental aspects of safety and environmental health
 Apply the professional code of ethics to a scenario

J. Attain recognized professional certification
 Explain the importance of ethics in the practice of occupational and environmental hygiene
 Understand the need for and resources available for continuing professional development after graduation
 Describe the requirements to obtain professional certification

K. Conduct a research activity resulting in a report that demonstrates mastery of the subject and high level of professional and public communication skills
 Design a research question, develop a plan and conduct research
 Communicate effectively with a variety of stakeholders (e.g., labor, management, government, peers, safety and health professionals, allied professionals)
 Produce a technical scientific report on research

L. Demonstrate advanced qualitative and quantitative problem-solving skills
 Function effectively as part of a multidisciplinary team to investigate and propose a solution to an exposure hazard in a workplace

COURSE MATERIAL AND AVAILABILITY

<table>
<thead>
<tr>
<th></th>
<th>Students</th>
<th>Instructor(s)</th>
<th>TA</th>
<th>Division</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Goals/outcomes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lecture notes, assignments</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples of homework and correct answers</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples of reports, graded</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples of exams and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTE: Students provide feedback on individual courses through the end-of-class Department and Division evaluation survey instrument. This instrument provides feedback on the course material, organization and presentation, and perceived contribution of the course to the achievement of Program Outcomes. In addition, feedback is received from the continuing, semi-annual Question-feedback process during which students identify Best Learning Experience, Session/presentation that was an endurance test, What would make life as a student better?, If I could do it over, I would…. Opportunities I would like to have but don’t seem to be available, Opportunities I would like more of, Aspects of the program the faculty should consider eliminating, Worst part of the UC program, Best part of the UC program, Other comments. A Ph.D. and M.S. student participate in Division faculty meetings. Exit surveys are conducted by the University and the Division as part of the requirements for graduation. All students are urged to participate fully in each of these activities in order to improve the educational experience.