Division of Environmental and Occupational Hygiene

Course Goals and Outcomes Form

Course number and title: 20 MECH 651 Safety Engineering and Product Liability
Graduate Credits: 3gr. cr
Instructor(s) in-charge: Thomas R. Huston, PhD, PE
Course type (underline all that apply): Lecture Laboratory Field Projects
Required or Elective: Required

Course Schedule:
- Lecture: 3 hours per week 1 meetings
- Discussion: ___ hours per week ___ sessions
- ___ hours for informal discussion
- Field Work: ___ hours per week ___ hours per survey/project
- Outside Study: ___ hours per week
- Office Hours: by appt.

Course Assignments:
- Homework: ___ assignments
- Exams: ___1/1 Mid term and Final
- Reports: ___X___ required
- Project ___X___ required

Grading Policy:
- Grades: 30% Midterm
- 40% Project
- 30% Final Exam

Project:
1. Report on a case assigned to a team of engineering experts
2. Papers will be graded on content, clarity, accuracy, organization, originality
3. Class presentation of points in the report; defense of points made in the report

Course Prerequisites:
Bachelors level background in engineering and/or biology and/or psychology

Catalog Description:
An overview into the design and analysis of engineering systems and products from the standpoint of safety and liability. The identification of hazards and the legal consequences of exposure to hazards is examined. Effective means for engineers to use in controlling exposure to hazards are developed. The historical development of product liability and safety engineering is also introduced.

Textbook and Any Related Course Materials:
Class notes are provided by the instructor

Blackboard:
No

Topics Covered:
Introduction
Course Goals (and Program Outcomes):

Student that successfully completes the course will be able to:

1. Comprehend the relationship between hazards and the potential for liability in engineering systems and products.
2. Recognize the different types of defects in products: design, manufacturing, and failure to warn.
3. Develop effective engineering countermeasures to combat product liability.
4. Understand the history of product liability and safety engineering and the dynamic nature of product liability and safety engineering.
5. Have a general understanding of the litigation process.
6. Demonstrate effective written and oral communication skills through the completion of a term project with a final written report.

NOTE: The ABET Program outcome is shown as a capital letter; the number designates the program specific outcome.

Evaluation Criteria:

Students are evaluated based on 1) Mid term exam 2) Final Exam 3) Project
The project involves the students being assigned to a team where they serve as an expert on a product liability case. They are provided documentation from actual old product liability cases and asked to prosecute or defend the case from a safety engineering standpoint. The team provides both a written report and oral presentation. In the oral presentation the team must defend its position against the opposing team(s).

Relation to Program Educational Objectives:

This is a required course for all Comprehensive Practice majors. The course contributes to the following Program Educational Objectives, as shown:

<table>
<thead>
<tr>
<th>Objective</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental Knowledge</td>
<td>60%</td>
</tr>
<tr>
<td>Hygiene Science</td>
<td>60%</td>
</tr>
<tr>
<td>Design Skills</td>
<td>10%</td>
</tr>
<tr>
<td>Professional Skills</td>
<td>5%</td>
</tr>
<tr>
<td>Life-long Learning</td>
<td>5%</td>
</tr>
</tbody>
</table>

NOTE: EOH faculty define Hygiene Science as all the Knowledge Elements other than the Basic Sciences; Design skills are those necessary to solve real world problems. Professional skills are those that involve teams, management, leadership, written and oral communication, approach to stakeholders and ethics; life-long learning is demonstration of the need for continuing professional development.

Is there a TA? Yes No

Is computer use expected? Yes No

Program outcomes and how they are covered in this course
For each ABET IH Program Outcome (A through L), the EOH Educational Outcomes are shown below. Upon completion of this course, students will have had the opportunity to acquire knowledge (K), skills (S) and attitudes (A) associated with each of the Educational Outcomes, as noted by underlining. Where the educational measurable outcome contributes strongly to the ABET Program Outcome, the K/S/A is shown in upper case; where the contribution is average, the k/s/a is shown in lower case letters. (Note, use the Contribution to Knowledge and Professional Skills estimates above to guide your decision.)

A. Identify agents, factors and stressors generated by and/or associated with defined sources, unit operations and/or processes:

 Identify potential health hazards of workplace processes and operations

B. Describe qualitative and quantitative aspects of generation of agents, factors and stressors:

 Describe the underlying processes of the generation of hazards in occupational and environmental settings

 Describe qualitative and quantitative aspects of hazards associated with specific occupational or environmental sources

C. Understand physiological and/or toxicological interactions of physical, chemical, biological and ergonomic agents, factors and/or stressors with the human body:

 Understand the relation between exposures and health outcomes

 Compare and contrast the potential for differences in response to hazards due to personal factors among some subjects at risk of exposure and the subsequent need to modify programs and practices

D. Assess qualitative and quantitative aspects of exposure assessment, dose-response, and risk characterization based on applicable pathways and modes of entry:

 Describe how to evaluate potential adverse outcomes of chemical or physical exposures, based on similarity of the exposure to documented hazards

 Describe occupational hygiene aspects of emerging technologies

 Describe the basic principles of conducting sampling and analysis for exposure assessment

 Describe the basic principles of evaluating engineering and non-engineering controls to reduce exposure

 Develop and implement an exposure assessment plan to evaluate potential hazards and existing controls

 Gather, manage and analyze quantitative (e.g., measurements of exposure or system performance) and qualitative (e.g., written programs) data to evaluate potential hazards and existing controls in order to reduce risk
E. Calculate, interpret and apply statistical and epidemiological data:

Apply epidemiologic and/or statistical concepts to the interpretation of exposure data

F. Recommend and evaluate engineering, administrative and personal protective equipment controls and/or other interventions to reduce or eliminate hazards:

Identify and recommend appropriate methods to reduce exposure (using engineering controls, personal protective equipment or administrative controls), or deficiencies in written programs and policies

Design work process/practice interventions

G. Demonstrate an understanding of applicable business and managerial practices:

Produce accurate oral and written reports, including descriptions of occupational processes and activities, exposure assessment plans and evaluation of occupational and environmental work settings

Describe approaches to interact with higher-level decision makers in various management structures

Manage resources effectively

Display effective leadership

H. Interpret and apply applicable occupational and environmental regulations:

Understand, interpret and apply occupational and environmental regulations

Apply guidelines, standards and laws in interpreting qualitative and quantitative data for exposure assessment for risk characterization

I. Understand fundamental aspects of safety and environmental health

Apply the professional code of ethics to a scenario

J. Attain recognized professional certification

Explain the importance of ethics in the practice of occupational and environmental hygiene

Understand the need for and resources available for continuing professional development after graduation

Describe the requirements to obtain professional certification

K. Conduct a research activity resulting in a report that demonstrates mastery of the subject and high level of professional and public communication skills

Design a research question, develop a plan and conduct research

Communicate effectively with a variety of stakeholders (e.g., labor, management, government, peers, safety and health professionals, allied professionals)
Produce a technical scientific report on research

L. Demonstrate advanced qualitative and quantitative problem-solving Skills

Function effectively as part of a multidisciplinary team to investigate and propose a solution to an exposure hazard in a workplace

COURSE MATERIAL AND AVAILABILITY

<table>
<thead>
<tr>
<th></th>
<th>Students</th>
<th>Instructor(s)</th>
<th>TA</th>
<th>Division</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Goals/outcomes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lecture notes, assignments</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Samples of homework and correct answers</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Samples of reports, graded</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Samples of exams and correct answers</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Course evaluation from students</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Instructor response/actions to evaluation comments</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTE: Students provide feedback on individual courses through the end-of-class Department and Division evaluation survey instrument. This instrument provides feedback on the course material, organization and presentation, and perceived contribution of the course to the achievement of Program Outcomes. In addition, feedback is received from the continuing, semi-annual Question-feedback process during which students identify Best Learning Experience, Session/presentation that was an endurance test, What would make life as a student better?, If I could do it over, I would…, Opportunities I would like to have but don’t seem to be available, Opportunities I would like more of, Aspects of the program the faculty should consider eliminating, Worst part of the UC program, Best part of the UC program, Other comments. A Ph.D. and M.S. student participate in Division faculty meetings. Exit surveys are conducted by the University and the Division as part of the requirements for graduation. All students are urged to participate fully in each of these activities in order to improve the educational experience.